

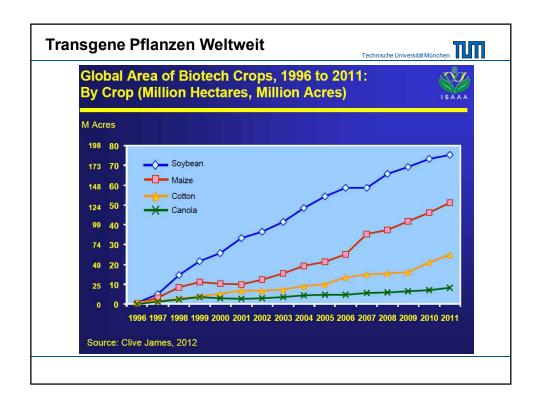
NETZWERK – INNOVATION – SERVICE www.burg-warberg.de

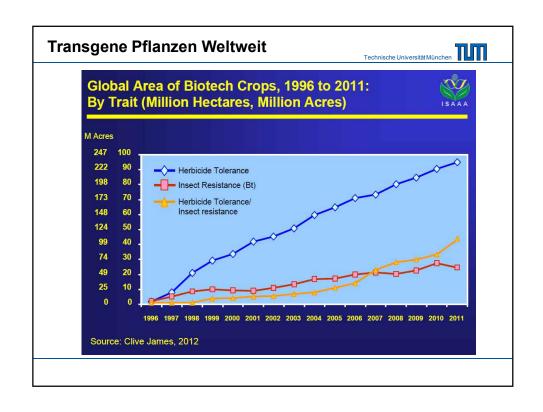
Bundeslehranstalt Burg Warberg e.V., An der Burg 3, 38378 Warberg Tel. 05355/961100, Fax 05355/961300, seminar@burg-warberg.de

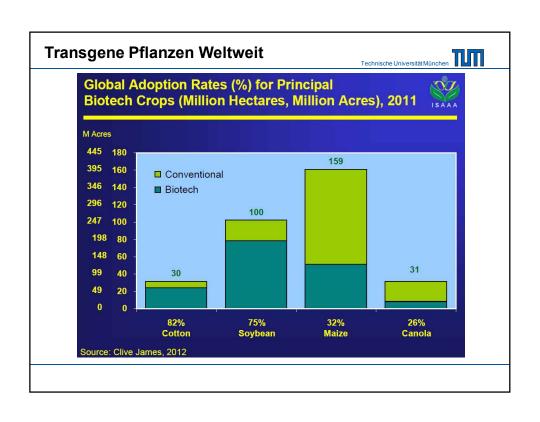
Futtermittelhandelstag am 15./16. Mai 2012

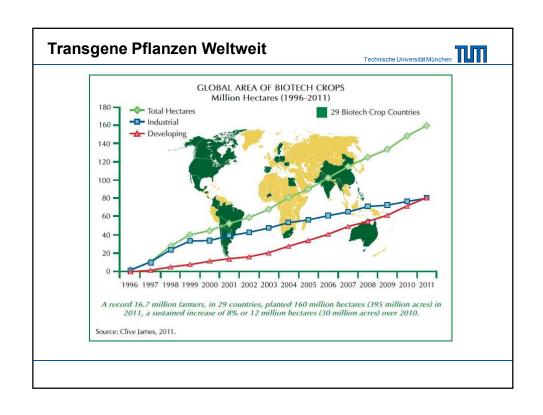
"Europa ohne Gentechnik -Perspektiven für Märkte, Landnutzung und Forschung"

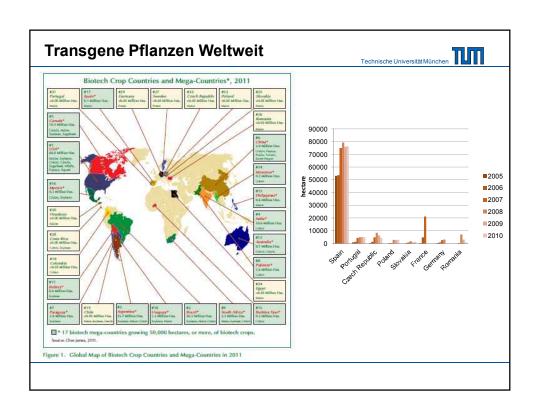
Prof. Dr. Justus Wesseler




Europa ohne Gentechnik -


Perspektiven für Märkte, Landnutzung und Forschung


Prof. Dr. Justus Wesseler


Lehrstuhl für Agrar- und Ernährungswirtschaft
Wissenschaftszentrum für Ernährung, Landwirtschaft und Umwelt Weihenstephan
Technische Universität München

Transgene Pflanzen in der EU

Anbau von TG Pflanzen in der EU in Hektar

			Jahr				
	2005	2006	2007	2008	2009	2010	
Spanien	53,225	53,667	75,148	79,269	76,057	67726	-
Frankreich	492	5,000	21,147	-	-	-	-
Tschechien	150	1,290	5,000	8,380	6,480	4680	150
Portugal	750	1,250	4,500	4,851	5,094	5500	-
Deutschland	342	947	2,685	3,171	-	-	15
Slovakei	-	30	900	1.900	875	1740	-
Rumänien	¹ 110,000	*90,000	350	7,146	3,344	823	-
Polen	-	100	320	3,000	3,000	3500	-
Schweden						-	80
Total TG Pflanzen (Amflora, 2010)	54,959	62,284	110,050	107,717	94,750	83,969	245

Source: GMO-Compass, 2012.

¹Cultivation of GM soybeans.
Note: Maize includes only event MON810, event BT176 not commercialized

Transgene Pflanzen in der EU

Zugelassene TG Produkte in der EU (2011)

	Zugelasse	ene TG Prod	lukte in	der EU (2	011)		
	Cotton	Carnation	Maize	Potato	Rape Seed	Soybeans	Sugar Beet
Import als Nahrungsmittel o. Futtermittel	6	2	26	1	3	3	1
Anbau			2	1			

Source: GMO-Compass, 2012.

Transgene Pflanzen in der EU

Definition von GVOs der Europäischen Union:

"genetisch veränderter Organismus (GVO): ein Organismus mit Ausnahme des Menschen, dessen genetisches Material so verändert worden ist, wie es auf natürliche Weise durch Kreuzen und/oder natürliche Rekombination nicht möglich ist."

Artikel 2(2) der EU Richtlinie 2001/18/EG

Problem:

"Determining what is possible from natural recombination requires either great hubris or a creationist ontology. To take the example of Bt plants, transfer of genes from prokaryotic to eukaryotic species is by no means unheard of in nature."

Herring, R. 2007. Opposition to transgenic technologies: ideology, interests and collective action frames. Nature Reviews: Genetics, 9: 458-463.

Transgene Pflanzen in der EU

Richtlinien:

- 2001/18/EC: absichtliche Freisetzung von GMOs (enthält Schutzklausel)

Verordnungen:

- 1829/2003: zu GM Lebens- und Futtermittel
- 1830/2003: zu Kennzeichnung and Rückverfolgbarkeit von GVOs
- 1946/2003: zu grenzüberschreitender Verbringung von GVOs
- Neue Verordnung zu Grenzwerten für Futtermittel (0.1%)

Empfehlung:

- 2003/556/EC: Koexistenz (aktualisiert 2005 and 2010)

European Food Safety Authority: Risikobewertung

Transgene Pflanzen in der EU

Kennzeichnungspflicht für GVOs in der EU

GM product	Example	Labeling requirement
GM plants, seeds, and food	Maize, maize seed, cotton seed, soybean sprouts, tomato	Yes
Food produced from GMOs	Maize flour, soybean oil, rape seed oil	Yes
Food additive/flavouring produced from GMOs	Highly filtered lecithin extracted from GM soybeans	Yes
GM feed	Maize	Yes
Feed produced from a GMO	corn gluten feed, soybean meal	Yes
Feed additive produced from a GMO	Vitamin B2	Yes
Food from animals fed on GM feed	Eggs, meat, milk	No
Food produced with the help of a GM enzyme	Bakery products produced with the help of amylase	No

Ökonomie Transgener Pflanzen

Höherer Deckungsbeitrag

Country	Insecticide reduction (%)	Increase in effective yield (%)	Increase in gross margin (US\$/ha)	Reference(s)
		and a	Bt cotton	
Argentina	47	33	23	Qaim & de Janvry 2003, 2005
Australia	48	0	66	Firt 2003
China	65	24	470	Pray et al. 2002
India	41	37	135	Qaim et al. 2006, Sadashivappa & Qaim 2009
Mexico	77	9	295	Traxler et al. 2003
South Africa	33	22	91	Thirtle et al. 2003, Gouse et al. 2004
United States	- 36	10	.58	Falck-Zepeda et al. 2000b, Carpenter et al. 2002
		100	Bt maize	
Argentina	0	9	20	Brookes & Barfoot 2005
Philippines	5	34	53	Brookes & Barfoot 2005, Yorobe & Quicoy 2006
South Africa	10	11	42	Brookes & Barfoot 2005, Gouse et al 2006
Spain	63	6	70	Gómez-Barbero et al. 2008
United States	8	.5	12	Naseem & Pray 2004, Fernandez- Cornejo & Li 2005

 $Source: Qaim, M \ (2009) \ The \ Economics of Genetically Modified Crops. Annual Review of Resources Economics 1: 3.1-3.29$

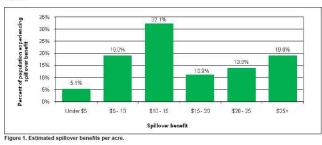
geringerer Pflanzenschutzmitteleinsatz

Table 9. Environmental impact (EI) differences between the top five canola herbicides 1995 and 2006.

Comparison	1995	2006	% change
EI ha ⁻¹	13,898	6,467	-53
Elf ha-1	8,176	3,575	-56
EL ha-1	3,783	2,199	-42
Ele ha-1	29,798	13,659	-54
Grams of ai ha-1	648	401	-38
Total ai (million kg)	3.4	2.1	$(-1.3)^d$

[&]quot;EI on farmers and farmworkers.

Smyth, S., M. Gusta, K. Belcher, P.W.B. Phillips, D. Castle. 2011. Changes in Herbicide Use after Adoption of HR Canola in Western Canada. Weed Technology 25:492-500.



Technische Universität München

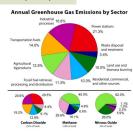
· auch auf Folgefrucht

At the 95% confidence interval, margin of error is 8.4% for average and 14.8% or greater for rest.

Gusta, M., S. Smyth, K. Belcher, P.W.B. Phillips, D. Castle. 2011. Economic Benefits of Genetically-modified Herbicide-tolerant Canola for Producers. AgBioForum 14(1):1-13.

EI on consumers.

^{*}EI on the ecology.


^{*}Difference between 1995 and 2006.

CO₂-Senke reduzierte Bodenbearbeitung

C-Source	C (t/year)	C (C\$/year)
Minimum tillage (seq.)	35,042	175,210
Zero tillage (seq.)	435,948	2,179,740
Total	471,990	2,354,950
nonGM case (zero tillage) (22%)	89,134	445,670
Balance	482,856	1,909,280

Carbon price: 5C\$/t

Smyth, S., M. Gusta, K. Belcher, P.W.B. Phillips, D. Castle. 2011. Environmental impacts from herbicide tolerant canola production in Western Canada. Agricultural Systems 104:403-410.

Ökonomie Transger

Maximum Incremental Social Tolerable Irreversible Costs

nchen TUTT

Table 2. SIRBs, SIIBs, hurdle rates, and MISTICs for *Bt* maize for grain maize production on average per year for the EU-15 at 10.5% discount rate w/ and w/o CAP subsidies (in 2005 prices)

Country	SIRB		SIIB		Hurdle rate	MISTIC			
	Mio. €	€/ha	Mio. €	€/ha		Mio. €	€/ha	€/capita	€/farmhl.
With CAP									
France	61.90	203.80	0.24	0.81	1.14	54.31	178.81	0.90	467.12
Greece	11.76	280.34	0.04	1.03	1.79	6.60	157.34	0.60	73.75
Italy	59.90	299.29	0.19	0.98	1.23	48.87	244.16	0.84	214.27
Portugal	4.48	194.31	0.02	1.08	1.21	3.73	161.56	0.36	30.84
Spain	27.24	340.13	0.07	0.90	1.28	21.42	268.73	0.51	257.86
Without C	AP								
France	35.89	117.89	0.24	0.81	1.16	31.09	(102.11)	0.52	267.40
Greece	7.11	169.32	0.04	1.03	2.50	2.89	68.75	0.26	32.25
Italy	37.25	186.71	0.19	0.98	1.31	28.55	143.13	0.49	125.20
Portugal	2.00	87.19	0.02	1.08	1.19	1.71	74.48	0.16	14.11
Spain	17.86	222.52	0.07	0.90	1.03	17.47	217.66	0.41	210.31

SIRB: social incremental reversible benefits. SIIB: social incremental irreversible benefits. MISTIC: maximum incremental social tolerable irreversible costs. Farmhl.: maize producing farm holdings.

Wesseler, Justus, Sara Scatasta, Eleonora Nillesen (2007): The Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) and other Benefits and Costs of Introducing Transgenic Maize in the EU-15. Pedobiologia 51(3):261-269.

 $\textbf{Table 3.} \quad \text{SIRBs, SIIBs, hurdle rates, and MISTICs for HT maize for grain maize production on average per year for the EU-15 at 10.5\% discount rates w/ and w/o CAP subsidies (in 2005 prices)$

Country	SIRB		SIIB		Hurdle rate	MISTIC			
	Mio. €	€/ha	Mio. €	€/ha		Mio. €	€/ha	€/capita	€/farmhl
With CAP									
Austria	2.46	88.99	0.05	1.69	1.58	1.61	58.1	0.2	52.61
Belgium	0.6	73.76	0.01	1.8	5.6	0.12	14.97	0.01	13.94
France	28.53	101	0.55	1.97	1.14	25.47	90.19	0.42	219.06
Germany	10.34	144.85	0.12	1.71	1.28	8.2	114.94	0.1	191.1
Greece	5.44	138.95	0.1	2.49	1.79	3.13	79.97	0.28	34.99
Italy	19.64	105.37	0.44	2.38	1.23	16.4	87.99	0.28	71.89
Netherlands	0.84	242.83	0.01	1.77	5.51	0.16	45.82	0.01	41.84
Portugal	2.06	96.28	0.06	2.62	1.21	1.76	82.15	0.17	14.54
Spain	12.6	168.61	0.16	2.18	1.28	10.08	134.95	0.24	121.43
Without CAP									
Austria	1.46	52.6	0.05	1.69	1.83	0.84	30.39	0.1	27.64
Belgium	0.13	15.67	0.01	1.8	41.01	0.02	2.18	0	2.02
France	16.63	58.43	0.56	1.97	1.16	14.85	52.18	0.25	127.73
Germany	5.31	73.82	0.12	1.71	1.18	4.64	64.49	0.06	108.02
Greece	3.28	83.91	0.1	2.49	2.5	1.41	36.06	0.13	15.73
Italy	12.26	65.74	0.44	2.38	1.31	9.77	52.43	0.17	42.85
Netherlands	0.85	242.85	0.01	1.77	4.83	0.18	52	0.01	47.81
Portugal	0.92	43.21	0.06	2.62	1.19	0.83	39	0.08	6.87
Spain	8.19	110.27	0.16	2.18	1.03	8.13	109.59	0.19	97.95

SIRB: social incremental reversible benefits. SIIB: social incremental irreversible benefits. MISTIC: maximum incremental social tolerable irreversible costs. Farmhl.: maize producing farm holdings.

Ökonomie Transgener Pflanzen

- Table 13: EUWABSIM results, adoption ceilings (ρ_{max}) , mean hurdle rates, annual social reversible benefits (W_3) , social irreversible benefits (R_a) and maximum
- incremental tolerable social irreversible costs (I*a) per hectare of HT sugar beet and
- per sugar beet growing farmer.

Member State	ρ_{max}	W _{max}	W _a (€/ha)	R _a (€/ha)	Hurdle Rate	I _a * (€/ha)	I _a * (€)	Coefficient of variation	I _a */farm (€)
New CMO sugar		(2)	- 0.		(<u>5</u> 2)	- 2	(<u>2</u>)	.0	
Belgium	98%	198	132	0.97	1.009099	131.9	11 031 382	3.44E-03	823
Denmark	82%	229	145	0.19	1.001713	144.8	5 076 405	6.40E-04	1186
Germany	63%	124	83	0.22	1.010634	82.2	32 244 302	3.79E-03	789
Greece	43%	105	65	0.94	1.002209	66.2	1 315 412	5.06E-04	91
Spain	99%	292	185	4.45	1.001611	189.1	13 424 289	6.26E-04	871
France	78%	150	102	1.09	1.014367	101.3	34 613 129	4.69E-03	1158
Italy	43%	77	48	-0.22	1.002026	48.1	5 509 687	6.77E-04	153
Netherland	97%	248	155	1.40	1.001956	156.4	10 583 648	7.08E-04	804
Austria	84%	212	141	-0.36	1.008735	139.7	6 572 343	3.62E-03	733
Portugal	99%	309	199	-0.72	1.001110	197.6	504 574	4.42E-04	753
Finland	97%	148	95	0.91	1.001445	96.2	1 617 853	5.80E-04	760
Sweden	47%	115	73	0.04	1.001841	72.8	2 538 996	6.37E-04	719
United	59%	114	77	0.85	1.012847	76.6	8 838 270	4.57E-03	1164
Kingdom									
Czech	91%	167	106	1.30	1.002170	107.5	4 029 889	7.12E-04	3838
Republic		***							
Hungary	92%	105	67	1.32	1.001456	67.9	2 255 003	5.58E-04	906
Poland	85%	152	97	0.56	1.001884	97.2	18 719 120	7.01E-04	231

Dillen, K., M. Demont & E. Tollens. 2009. "Corporate Pricing Strategies with Heterogeneous Adopters: The Case of Herbicide Resistant Sugar Beet", AgBioForum, 12(3&4): 334-345.

Insgesamt (Netto-Nutzen, wenn sofort eingeführt):

Bt Mais 959 mio. €

HR Mais 481 mio. €

HR Zuckerrübe 5233 mio. €

Total: 6674 mio. € (o. 700 mio. € pro Jahr)

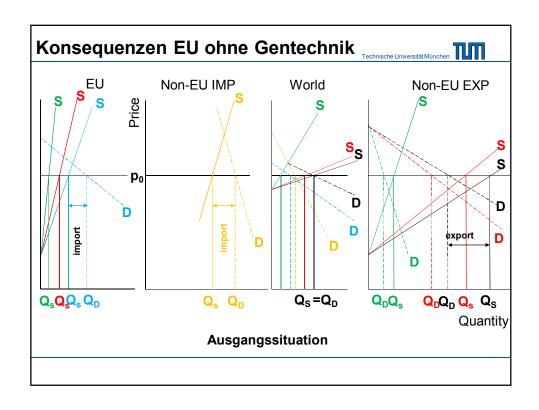
(ungefähr 15 % der 45 Milliarden Euro zur Rettung von Griechenland)

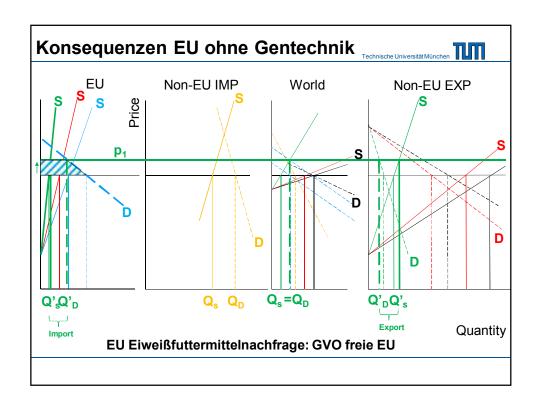
Ökonomie Transgener Pflanzen

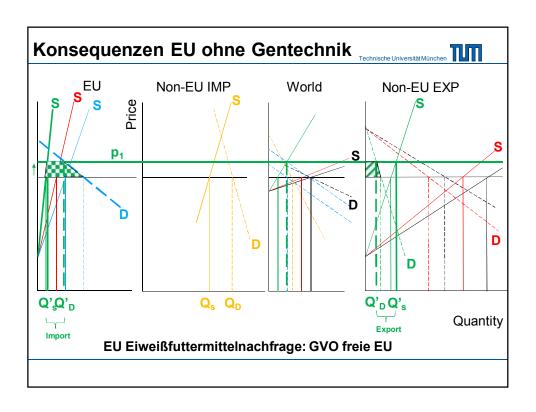
Zwischenbilanz für zugelassene TG Pflanzen

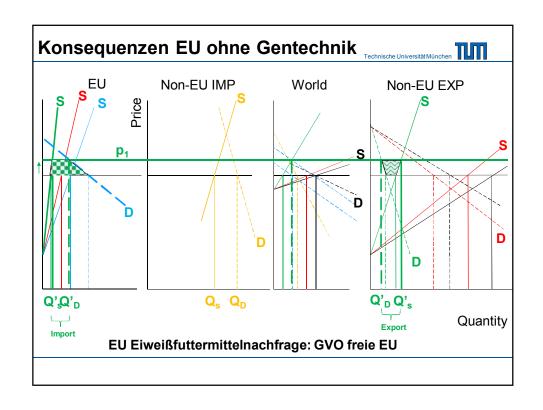
- TG Pflanzen stellen weder eine Gefährdung für die Gesundheit noch für die Umwelt dar (EFSA)
- TG Pflanzen verbessern Umweltleistungen der LW
- TG Pflanzen ermöglichen höhere Erträge je Hektar
- · TG Pflanzen weisen positiven Einkommenseffekte auf

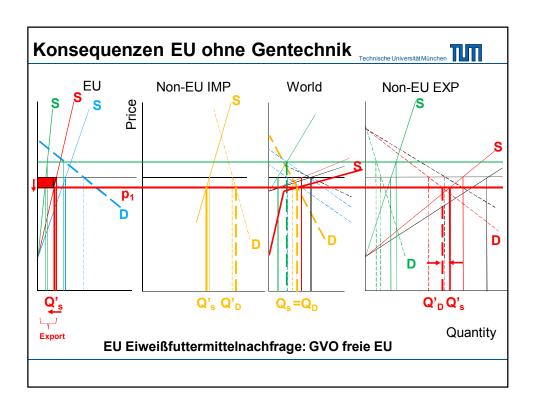
Anzumerken

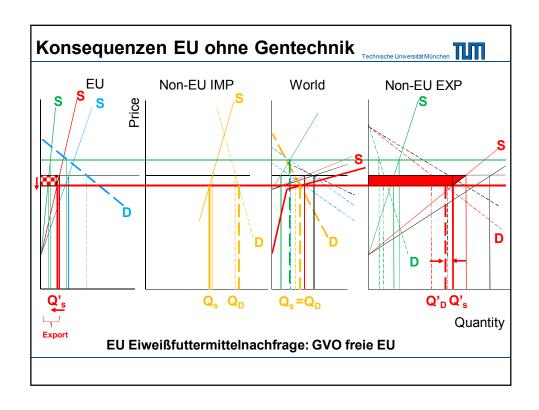

- Resistenzen gegenüber Bt-Produkten im Baumwoll- und Maisanbau
- Glyphosatresistenz bei einigen Pflanzen (17 in 2007)

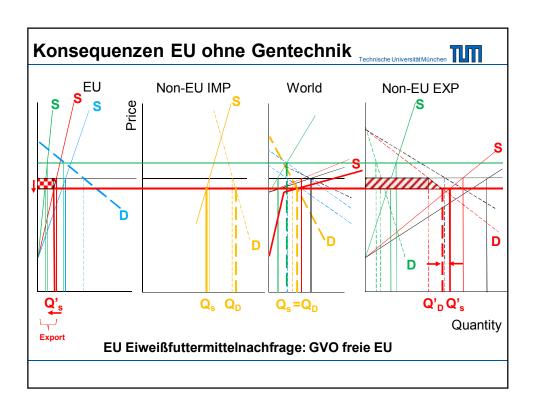

Konsequenzen EU ohne Gentechnik

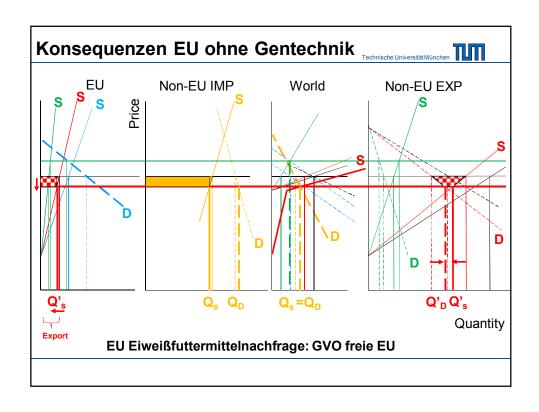

Szenario:

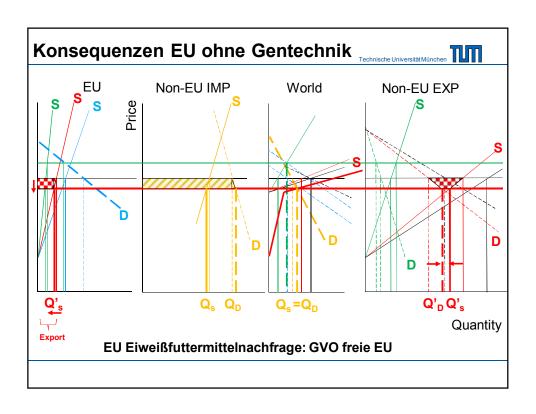

- Worst case: Kein Export von GVO Eiweißfuttermittel in die EU
- Nur Betrachtung der Angebotsseite (keine Differenzierung auf Nachfrageseite)
- · Komparativ-statische Betrachtung

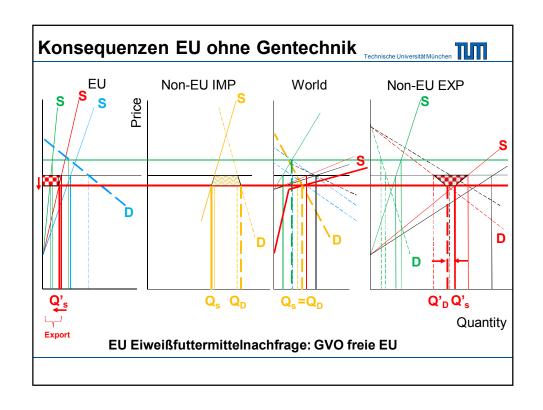


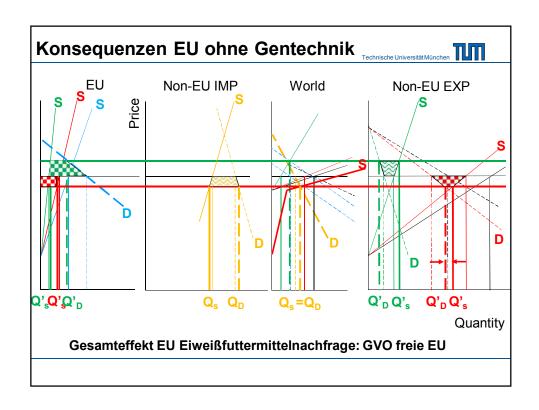








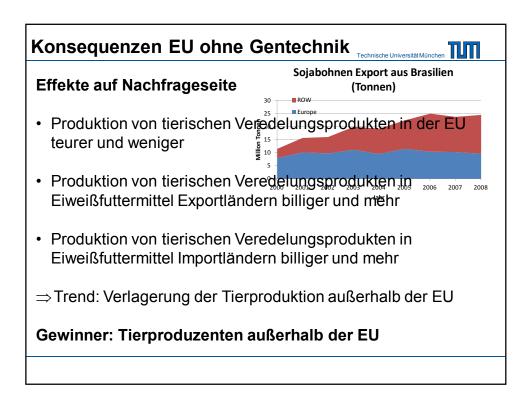




Konsequenzen EU ohne Gentechnik

Weltmarkteffekte

- Horizontale und vertikale Differenzierung
- Preis für GVO-freie Eiweißfuttermittel insgesamt steigt
- Preis für GVO Eiweißfuttermittel insgesamt sinkt
- Handel f
 ür GVO-freie Eiweißfuttermittel in der EU steigt
- Handel an Eiweißfuttermittel insgesamt in der EU sinkt
- Internationaler Handel an Eiweißfuttermittel steigt


Konsequenzen EU ohne Gentechnik

Effekte auf Angebotsseite

- Exporteure GVO-freie Eiweißfuttermittel in die EU gewinnen
- Exporteure GVO Eiweißfuttermittel verlieren
- Produzenten von GVO-freien Eiweißfuttermittel in der EU gewinnen
- Produzenten von Eiweißfuttermitteln in nicht-EU Importländern verlieren
- ⇒ Trend: zunahme Produktion von GVO-freie Eiweißfuttermittel

Gewinner: Soja und Rapsproduzenten in der EU

Konsequenzen EU ohne Gentechnik

Nettoeffekte

- Internationale Wettbewerbsfähigkeit der LW außerhalb der EU steigt
- Internationale Wettbewerbsfähigkeit der LW innerhalb der EU sinkt
- Konsumenten innerhalb der EU zahlen höhere Nahrungsmittelpreise
- Konsumenten außerhalb der EU zahlen niedrigere Nahrungsmittelpreise

Weitere Perspektiven für die Märkte

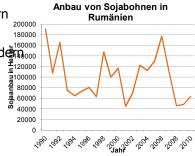
- Asynchroner Zulassungsprozess
- Low-Level-Presence (LLP) nicht zugelassener GVOs
- Grenzwerte: 0,0% für Lebensmittel bzw. 0,1% für Futtermittel

Weitere Perspektiven für die Märkte Technische Universität München

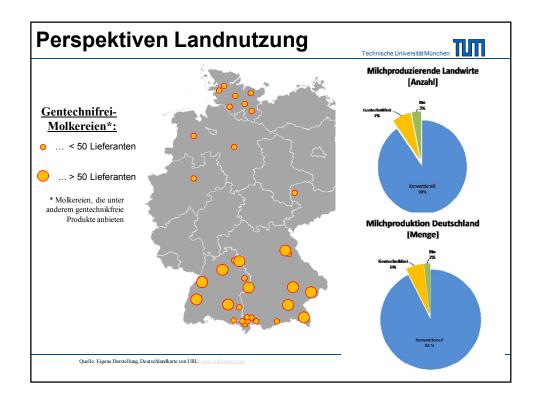
Probleme des EU Zulassungsverfahrens:

- Bearbeitung von Zulassungsanträgen (12 kombinierte Eigenschaften ergibt 298 mögliche Kombinationen für die Zulassung);
- IPTS hat 148 Eigenschaften identifiziert für Zulassung bis 2014
- Schwierig diese zeitnah zu bearbeiten

Weitere Perspektiven für die Märkte


Probleme, die sich daraus ergeben

- reduzierte Einfuhr von Futter- und Lebensmitteln
- Zunahme an zurückgewiesenen Einfuhren auf Grund von LLP
- Zunahme der zufälligen Verunreinigung
- Zusätzliche Kosten für Segregation in der Futter- und Lebensmittelkette
- => Höhere Futter- und Lebensmittelpreise u. reduzierte Wettbewerbsfähigkeit der EU Landwirtschaft


Perspektiven Landnutzung

- Allokation des Anbaus von TG und NTG Pflanzen
 - TG Anbauländer realisieren komparative Kostenvorteile
 - NTG Länder verlieren an Wettbewerbsfähigkeit
 - Positive Umweltleistungen in TG Ländern
 - Negative Umweltwirkungen in NTG Lände

Perspektiven Landnutzung - Effekte durch "ohne Gentechnik" Kennzeichnung - Anstieg Nachfrage nach NTG Eiweißpflanzen - Anstieg der Futtermittelpreise - Anstieg der Milchproduktionskosten - Anstieg der Milchproduktionskosten - Anstieg der Milchproduktionskosten

Perspektiven Landnutzung

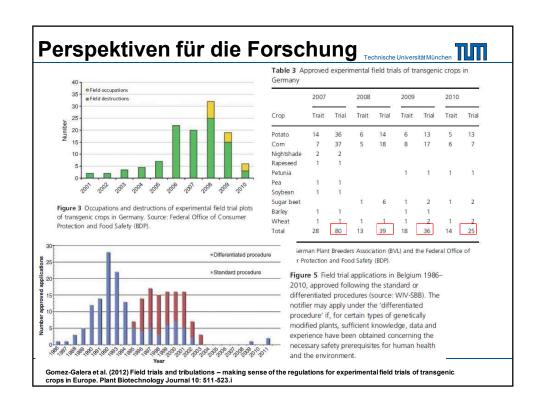
- Umweltwirkungen
 - Umweltschäden der Landwirtschaft in NTG Länder höher als in TG Ländern
 - ⇒ mehr PSM Einsatz (schlecht für Fauna und Flora)
 - ⇒ mehr GHG Emissionen

Perspektiven für die Forschung

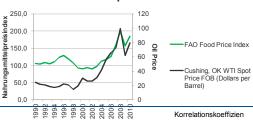
Hohe Zulassungskosten durch Regulierung

Cost categories	Range of costs incurred (\$)		
Preparation for hand-off of events into regulatory	20,000-50,000		
Molecular characterization	300,000-1,200,000		
Compositional assessment	750,000-1,500,000		
Animal performance and safety studies	300,000-845,000		
Protein production and characterization	620,000-1,725,000		
Protein safety assessment	195,000-855,000		
Agronomic and phenotypic assessments	130,000-460,000		
Production of tissues	680,000-2,200,000		
ELISA development, validation and expression analysis	415,000-610,000		
Herbicide residue study	105,000-550,000		
EU import (detection methods, fees)	230,000-405,000		
Canada costs	40,000-195,000		
Stewardship	165,000-300,000		
Toxicology (90-day rat)—when done	250,000-300,000		
Facility and management overhead costs	560,000-4,500,000		
Total	6,180,000-14,510,000		

 $Kalaitz and on a kes, N., J. \ Alston, K. \ Bradford (2007) \ Compliance \ costs \ of \ regulatory \ approval \ of \ new \ biotech \ crops. \ Nature \ Biotechnology 25(5): 509-511..$


Perspektiven für die Forschung Technische Universität Müncher

- · Abwanderung der Grundlagen- und Anwendungsforschung
 - Beispiele: BASF (Forschung), KWS (Freilandversuche)


Perspektiven für die Forschung Technische Universität München

- negative Auswirkungen auf andere Bereiche
 - Beispiele: Enzymforschung (Medizin, nachwachsende Rohstoffe); BP Energy Bioscience Institute (UC Berkeley, 500 Mio. US\$)
 - Forschung f
 ür Grenzstandorte (Afrika, Trockengebiete, versalzte Böden, ...)

Verbindung zwischen Ernährungsund Ölpreis

Perspektiven für die Forschung Technische Universität München Turi

- andererseits
 - Forschung zur effizienteren Produktion von Eiweißfuttermitteln
 - Kosten der "gentechnikfreien" Politik
 - Verbraucherverhalten- und einstellung zu "gentechnikfreien" Nahrungsmitteln

Zusammenfassung

- Kurzfristig Anstieg der Nachfrage nach NTG Futtermittel
- Wirtschaftliche Benachteiligung der LW in Europa
- Höhere Umweltbelastung (Biodiversität, Klimagasemissionen)
- Langfristig negative Auswirkungen auf allgemeine wirtschaftliche Entwicklung insbesondere in der EU
- Eiweißstrategie teure und umweltschädliche Lösung

Herzlichen Dank für Ihre Aufmersamkeit

Jonathan Swift

"Wer zwei Ähren oder zwei Grashalme auf einem Flecken lassen könnte, auf dem zuvor nur eines stand, dem würde die Menschheit mehr verdanken, und der würde seinem Land einen besseren Dienst erweisen als alle Politiker zusammen."